Two equivalent definitions of integration [, fdu, using U(f,u) = L(f,;1), upper sum
equals lower sum

In the class, following the line of defining [, fdu using U(f, 1) = L(f, i), we can give the following

two defintions.

Definition A. Let (X, M, 1) be a measure space and let f: X — R be a function. We say that the

integration of f exists if U(f, ) = L(f, p), where

U(f,p) :inf{/ sdu: s is simple andst}
X

and

L(f,p) :sup{/ sdp: s is simple andsﬁf}.
X

Note that the s above can take value +o0o and —oo. In this case, we use A—fod,u to denote the

integration of f, whose value is just the value of U(f, u) = L(f, p).

Definition B. Let (X, M, 1) be a measure space and let f: X — R be a function. Use f; and f_
to denote the positive part and negative part of f, as defined in class. We say that the integration of
[ exists is if both A- [, fidu and A- [, f_du exist and at most one of them if co. In this case, the

integration of f, denoted as B—fX fdu, is defined to be

B-/dep:B-/Xf+du—B-/Xf_du.

As I mentioned in the class, for measurable functions, these two defintions are just equivalent if the
integration if finite.

Remark: One key step we need is: starting from U(f,u) = L(f, u), we can, for any € > 0, find a
pair of simple functions g and h, such that ¢ < f < h and fX hdp — fX gdu < e. To ensure this, we

assume f to have finite integration, that is, we have things like U(f, u) = L(f, ) € (—00, 400).
Now, we will show the equivalence of them.

Proposition 1. For any measurable positive function f, the integration of f exists in the sense of



Defn. A if and only if the integration of f exists in the sense of Defn. B. Besides, their integrations in
two definitions are the same, if exists.

This proposition 1 is just trivial.
Before stating the next proposition, we will mention the following fact.

Fact 2. For any measurable function f, the following are equivalent:

1) U(f, ) = L(f, p) < o0
2) U(f4+. 1) = L(f+, 1) <00 and U(f-, p) = L(f-, p) < o0.

A sketch of the proof is like this: Let E be measurable subset of X on which f is positive. Any
simple function restricted on E or X — F is still a simple function. For the other direction, if one simple
function is on £ and another simple function is on X — D (both satisfying > f or < f), combining them
together, you can get a simple function on X satisfying > f or < f. Using the definition of integrations,
you should be able to finish the proof.

From this fact, it follows directly that the integration of f in Defn. A is finite if and only if the
integration of f in Defn. B is finite. So we can just say “the integration of f is finite” without stating

in which definition.

Proposition 3. In case of finite integrations, the above two definitions (Defn. A and Defn. B) are
equivalent.

“only if” part:

Assume the finite integration of a measurable function f exists in the sense of Defn. A. We will first

show that the integration of f exists in the sense of Defn. B. Then we will show that

A-/dep:B-/deu

Let Xt = {x: f(z) > 0} and let X~ = {z: f(z) < 0}. Then both Xt and X~ are measurable,
XTNX =0and XTUX™ = X. Easy to check that xx+ - f+ = f+, xx- - f- = f_, xx+ - f = fy and
xx- - f=—f-

According to Defn. A, we know that U(f, u) = L(f,p). As xx+ - f = f+, xx- - f = —f_ and note



that U(—f_,u) = —L(f-, ) and L(—f_,u) = —U(f-, p), in order to show the integration of f exists in
the sense of Defn. B, we just need to show the integrations of xx+ - f and xx- - f both exist (as these
two funtions are either postiive or negative, as for their integrations, Defn. A and Defn. B are just the
same). If you are still concerned about why Defn. A and Defn. B agrees for negative functions, recall
that we have proved something like U(—F, u) = —L(F, i) and L(—F, ) = —=U(F, u) for any measurable
function F' couple of weeks ago in class. This enables us to transform the case of negative functions to
positive functions.

We will just show the that the integration of x x+ - f exists in the sense of Defn. B, as the case of
Xx- - f is just similar.

As the integration of f exists in the sense of Defn. A and the integration is finite, for any € > 0,
there exists simple functions g and h, such that ¢ < f < h, and fX hdp — fX gdu <e. As xx+ >0, we

have

Xx+ 9 < xx+f < xx+-h

That is

Xx+ 9 < fyr <xx+-h,

where xx+ - g and yx+ - h are simple functions satisfying (as we are dealing with simple functions)

/XX+-hdu—/XX+-gdu=/xX+-h—xX+~gdu
X X X

It then follows that the integration of f, exists. Similarly, the integration of f_ exists. Thus the
integration of f exists in the sense of Defn. B.
Now, it remains to show that A- [, fdu = B- [, fdp. This follows directly from the sketchy proof

of the above listed Fact 2 (why?).



“if” part:

Assume the finite integration of f exists in the sense of Defn. B, we will show that the integration
of f exists in the sense of Defn. A, and A- [, fdu =B- [, fdpu.

According to Defn. B, the integraion of f, and f_ both exists in the sense of Defn. A. (for simple or
negative functions, Defn. A and Defn. B are just the same). As the integration is finite, for any € > 0,

there exists simple functions ¢g; and hy, such that

g < fr <h; and /hldu—/gld,u<e.
X X

We can furthur assume that g; and hy are all zero on {z: f(x) < 0}. In fact, if not, just multiplying ¢
and hy with X(s: f2)>0y Will do the trick.

Similarly, we can find two simple functions gs, hs, such that

g2 < f- < hy and /h2dﬂ—/92dﬂ<€
X X

and gy and hy are all zero on {x: f(x) > 0}.

Easy to check that g; — he and hy; — gy are simple funcitons, satisfying

g—h < f=f—f <h <h —g, and /h1—92du—/91—h2du<26-
X X

Let € — 0, we are done. That is, we proved both the existence of the integration of f in the sense of
Defn. A and the desired fact that A- [, fdu=B- [, fdu.
Q.E.D.



