Two equivalent definitions of integration $\int_{X} f \mathbf{d} \mu$, using $U(f, \mu)=L(f, \mu)$, upper sum equals lower sum

In the class, following the line of defining $\int_{X} f \mathrm{~d} \mu$ using $U(f, \mu)=L(f, \mu)$, we can give the following two defintions.

Definition A. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be a function. We say that the integration of f exists if $U(f, \mu)=L(f, \mu)$, where

$$
U(f, \mu)=\inf \left\{\int_{X} s \mathrm{~d} \mu: s \text { is simple and } s \geq f\right\}
$$

and

$$
L(f, \mu)=\sup \left\{\int_{X} s \mathrm{~d} \mu: s \text { is simple and } s \leq f\right\} .
$$

Note that the s above can take value $+\infty$ and $-\infty$. In this case, we use $\mathrm{A}-\int_{X} f \mathrm{~d} \mu$ to denote the integration of f, whose value is just the value of $U(f, \mu)=L(f, \mu)$.

Definition B. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be a function. Use f_{+}and f_{-} to denote the positive part and negative part of f, as defined in class. We say that the integration of f exists is if both $\mathrm{A}-\int_{X} f_{+} \mathrm{d} \mu$ and $\mathrm{A}-\int_{X} f_{-} \mathrm{d} \mu$ exist and at most one of them if ∞. In this case, the integration of f, denoted as B- $\int_{X} f \mathrm{~d} \mu$, is defined to be

$$
\text { B- } \int_{X} f \mathrm{~d} \mu=\text { B- } \int_{X} f_{+} \mathrm{d} \mu-\mathrm{B}-\int_{X} f_{-} \mathrm{d} \mu .
$$

As I mentioned in the class, for measurable functions, these two defintions are just equivalent if the integration if finite.

Remark: One key step we need is: starting from $U(f, \mu)=L(f, \mu)$, we can, for any $\epsilon>0$, find a pair of simple functions g and h, such that $g \leq f \leq h$ and $\int_{X} h \mathrm{~d} \mu-\int_{X} g \mathrm{~d} \mu<\epsilon$. To ensure this, we assume f to have finite integration, that is, we have things like $U(f, \mu)=L(f, \mu) \in(-\infty,+\infty)$.

Now, we will show the equivalence of them.
Proposition 1. For any measurable positive function f, the integration of f exists in the sense of

Defn. A if and only if the integration of f exists in the sense of Defn. B. Besides, their integrations in two definitions are the same, if exists.

This proposition 1 is just trivial.
Before stating the next proposition, we will mention the following fact.
Fact 2. For any measurable function f, the following are equivalent:

1) $U(f, \mu)=L(f, \mu)<\infty$
2) $U\left(f_{+}, \mu\right)=L\left(f_{+}, \mu\right)<\infty$ and $U\left(f_{-}, \mu\right)=L\left(f_{-}, \mu\right)<\infty$.

A sketch of the proof is like this: Let E be measurable subset of X on which f is positive. Any simple function restricted on E or $X-E$ is still a simple function. For the other direction, if one simple function is on E and another simple function is on $X-D$ (both satisfying $\geq f$ or $\leq f$), combining them together, you can get a simple function on X satisfying $\geq f$ or $\leq f$. Using the definition of integrations, you should be able to finish the proof.

From this fact, it follows directly that the integration of f in Defn. A is finite if and only if the integration of f in Defn. B is finite. So we can just say "the integration of f is finite" without stating in which definition.

Proposition 3. In case of finite integrations, the above two definitions (Defn. A and Defn. B) are equivalent.

Proof:

"only if" part:
Assume the finite integration of a measurable function f exists in the sense of Defn. A. We will first show that the integration of f exists in the sense of Defn. B. Then we will show that

$$
\mathrm{A}-\int_{X} f \mathrm{~d} \mu=\mathrm{B}-\int_{X} f \mathrm{~d} \mu
$$

Let $X^{+}=\{x: f(x) \geq 0\}$ and let $X^{-}=\{x: f(x)<0\}$. Then both X^{+}and X^{-}are measurable, $X^{+} \cap X^{-}=0$ and $X^{+} \cup X^{-}=X$. Easy to check that $\chi_{X^{+}} \cdot f_{+}=f_{+}, \chi_{X^{-}} \cdot f_{-}=f_{-}, \chi_{X^{+}} \cdot f=f_{+}$and $\chi_{X^{-}} \cdot f=-f_{-}$.

According to Defn. A, we know that $U(f, \mu)=L(f, \mu)$. As $\chi_{X^{+}} \cdot f=f_{+}, \chi_{X^{-}} \cdot f=-f_{-}$and note
that $U\left(-f_{-}, \mu\right)=-L\left(f_{-}, \mu\right)$ and $L\left(-f_{-}, \mu\right)=-U\left(f_{-}, \mu\right)$, in order to show the integration of f exists in the sense of Defn. B, we just need to show the integrations of $\chi_{X^{+}} \cdot f$ and $\chi_{X^{-}} \cdot f$ both exist (as these two funtions are either postiive or negative, as for their integrations, Defn. A and Defn. B are just the same). If you are still concerned about why Defn. A and Defn. B agrees for negative functions, recall that we have proved something like $U(-F, \mu)=-L(F, \mu)$ and $L(-F, \mu)=-U(F, \mu)$ for any measurable function F couple of weeks ago in class. This enables us to transform the case of negative functions to positive functions.

We will just show the that the integration of $\chi_{X^{+}} \cdot f$ exists in the sense of Defn. B , as the case of $\chi_{X^{-}} \cdot f$ is just similar.

As the integration of f exists in the sense of Defn. A and the integration is finite, for any $\epsilon>0$, there exists simple functions g and h, such that $g \leq f \leq h$, and $\int_{X} h \mathrm{~d} \mu-\int_{X} g \mathrm{~d} \mu<\epsilon$. As $\chi_{X^{+}} \geq 0$, we have

$$
\chi_{X^{+}} \cdot g \leq \chi_{X^{+}} f \leq \chi_{X^{+}} \cdot h .
$$

That is

$$
\chi_{X^{+}} \cdot g \leq f_{+} \leq \chi_{X^{+}} \cdot h,
$$

where $\chi_{X^{+}} \cdot g$ and $\chi_{X^{+}} \cdot h$ are simple functions satisfying (as we are dealing with simple functions)

$$
\begin{aligned}
\int_{X} \chi_{X^{+}} \cdot h \mathrm{~d} \mu-\int_{X} \chi_{X^{+}} \cdot g \mathrm{~d} \mu & =\int_{X} \chi_{X^{+}} \cdot h-\chi_{X^{+}} \cdot g \mathrm{~d} \mu \\
& =\int_{X} \chi_{X^{+}} \cdot(h-g) \mathrm{d} \mu \\
& =\int_{X^{+}} h-g \mathrm{~d} \mu \\
& \leq \int_{X} h-g \mathrm{~d} \mu \\
& =\epsilon
\end{aligned}
$$

It then follows that the integration of f_{+}exists. Similarly, the integration of f_{-}exists. Thus the integration of f exists in the sense of Defn. B.

Now, it remains to show that $\mathrm{A}-\int_{X} f \mathrm{~d} \mu=\mathrm{B}-\int_{X} f \mathrm{~d} \mu$. This follows directly from the sketchy proof of the above listed Fact 2 (why?).
"if" part:
Assume the finite integration of f exists in the sense of Defn. B, we will show that the integration of f exists in the sense of Defn. A, and A- $\int_{X} f \mathrm{~d} \mu=\mathrm{B}-\int_{X} f \mathrm{~d} \mu$.

According to Defn. B, the integraion of f_{+}and f_{-}both exists in the sense of Defn. A. (for simple or negative functions, Defn. A and Defn. B are just the same). As the integration is finite, for any $\epsilon>0$, there exists simple functions g_{1} and h_{1}, such that

$$
g_{1} \leq f_{+} \leq h_{1} \text { and } \int_{X} h_{1} \mathrm{~d} \mu-\int_{X} g_{1} \mathrm{~d} \mu<\epsilon
$$

We can furthur assume that g_{1} and h_{1} are all zero on $\{x: f(x)<0\}$. In fact, if not, just multiplying g_{1} and h_{1} with $\chi_{\{x: f(x) \geq 0\}}$ will do the trick.

Similarly, we can find two simple functions g_{2}, h_{2}, such that

$$
g_{2} \leq f_{-} \leq h_{2} \text { and } \int_{X} h_{2} \mathrm{~d} \mu-\int_{X} g_{2} \mathrm{~d} \mu<\epsilon
$$

and g_{2} and h_{2} are all zero on $\{x: f(x) \geq 0\}$.
Easy to check that $g_{1}-h_{2}$ and $h_{1}-g_{2}$ are simple funcitons, satisfying

$$
g_{1}-h_{2} \leq f=f_{+}-f_{-} \leq h_{1} \leq h_{1}-g_{2} \text { and } \int_{X} h_{1}-g_{2} \mathrm{~d} \mu-\int_{X} g_{1}-h_{2} \mathrm{~d} \mu<2 \epsilon
$$

Let $\epsilon \rightarrow 0$, we are done. That is, we proved both the existence of the integration of f in the sense of Defn. A and the desired fact that A- $\int_{X} f \mathrm{~d} \mu=\mathrm{B}-\int_{X} f \mathrm{~d} \mu$.
Q.E.D.

